

```
    Progress monitoring throughout lesson- clarifying
questions, check-
    in strategies, etc.
I should be able to tell if the students are understanding
based on the classroom discussion and if they are able to
do the checkpoint problems.
```


Consideration for Back-up Plan:

```
If the students seem to not be understanding, we will go over some of the worksheet problems and I will ask for specific questions.
```


End of lesson: If applicable- overall unit, chapter, concept,

 etc.:There will be a quiz with other material on Friday of this week on the material.

Reflection (What went well? What did the students learn? How do you know? What changes would you make?):
The start up activity was a great introduction to the material. The students picked up on the topic almost right away. They learned new vocabulary and were able to put it into context. I know they picked up on the content because we were able to work through the practice problems in the notes together, and it was evident on their worksheet as well. I taught this lesson back-to-back at BHS. Both times it went over very well. The second time, I made adjustments allowing for more student input. I also took the struggles from the first class and was proactive to prevent those same struggles. If I were to do this lesson again, I would allow for more differentiation. This lesson was pretty cut and dry-there were not many places which presented harder or easier problems. I would create extra worksheets for students who understand the content very well. For those students who struggle with the topic, I would like to do more problems together to talk through the material.

Pythagorean Theorem Handout (My notes)

Start with "Think about it" question: There is a ladder that is x feet tall. It hits the building at 16 feet and is 12 feet from the bottom edge of the building, as seen in the picture. What is the length of the ladder?

This is a real-life application of the Pythagorean theorem. After we do some notes, we will be able to solve this problem.

Review:

What is a right triangle? Contains angle with 90 degrees
What are the three sides of a triangle referred to? Base(leg), height(leg), hypotenuse

Base: bottom leg of triangle

Height: leg of triangle
Hypotenuse: Side opposite the right angle
The Pythagorean theorem is a formula for right triangles. When I know two side lengths, I can

Let's see this on a triangle: (label $\mathbf{a}, \mathbf{b}, \mathbf{c}$, and the right angle)

Base: leg b

Height: leg a
Hypotenuse: Side c

Instruct class to take out green sheet to follow along for the next problems.

- Do example 1: Slowly-talk out process of deciding which side is which
- Do example 2: Again, talk about how I decided which sides to use
- Tell students to do problems 1-3 at the checkpoint. After they complete, go over answers.
- Do the beginning ladder problem together.

Complete the worksheet green worksheet
Answer to essential question: Substitute known sides into $a^{\wedge} 2+b^{\wedge} 2=c^{\wedge} 2$.
Leg of a right triangle: base, height, side a or b.
Hypotenuse of a right triangle: Leg opposite the right angle; side c.
Summary

Notes for the Pythagorean Theorem Topic 4.4

There is a ladder that is x feet tall. It hits the building at 16 feet and is 12 feet from the bottom edge of the building, as seen in the picture. What is the length of the ladder?

Review:

What is a right triangle? \qquad
What are the three sides of a triangle called? \qquad
Base: \qquad
Height: \qquad
Hypotenuse: \qquad
The Pythagorean theorem is a formula for \qquad . When I know \qquad side lengths, I can determine the third using the formula \qquad .

Let's see this on a triangle: Label sides a, b, c, and the right angle.

Base:
Height:
Hypotenuse:

Lesson Plan Template
 Pythagorean Theorem Worksheet
 Topic 4.4

Name: \qquad

Date: \qquad

For the following problems, use your knowledge of the Pythagorean Theorem to solve for the unknown sides. Show your work and label the units.

1) Find the missing side length c.

12 ft
2) Find the missing leg y.

3) Are the indicated lengths correct? How do you know? Show your work.

Lesson Plan Template

4) Find the side lengths $A B, A C$, and $B C$.

5) Label the sides. Find the length of the hypotenuse.

6) Bonus: To the right is an isosceles triangle. Find the height of the triangle.

