


Summary:

| Chapter 4- Triangle Relationships |  |
| :---: | :---: |
| 4.5 The Distance Formula | Name: |
|  | Day 8 Notes |
|  | Considering two points, can I find the distance between them? |
| Point | - Has an $x$ and a y coordinate <br> - $(x, y)$-always in this order <br> - Ex. $(3,2)-3$ over on the $x$ axis, 2 up on the $y$ axis |
| Nonnegotiable | - Something that cannot change. It is permanently the way it is |
| Coordinate Plane | - Where our points lie. <br> - $(x, y)$ plane or cartesian plane |
| $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ | THE DISTANCE FORMULA <br> If $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ are points in a coordinate plane, then the distance between $A$ and $B$ is $A B=\sqrt{(\ldots)^{2}+(\quad)^{2}} .$  |
| $\begin{aligned} & \mathrm{D}=(1,2) \\ & \mathrm{X} 1=1, Y 1=2 \\ & \mathrm{E}=(3,-2) \\ & \mathrm{X} 2=3, Y 2=-2 \end{aligned}$ | Find the distance between $D(1,2)$ and $E(3,-2)$. |
| Yes, if I can create a right triangle. (90* angle) $\begin{aligned} & 2^{\wedge} 2+4^{\wedge} 2=c^{\wedge} 2 \\ & c^{\wedge} 2=20 \\ & C=4.472 \end{aligned}$ | Follow-Up <br> Can Example 3 be done using the Pythagorean Theorem rather than the Distance Formula? Explain. |



Summary:

I learned how to find the distance between 2 points using the distance formula $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

I learned to find the distance using the Pythagorean Theorem if I can form a right triangle (on a graph).

